
Moving on From Group Commit: Autonomous Commit
Enables High Throughput and Low Latency on NVMe SSDs

LAM-DUY NGUYEN, Technische Universität München, Germany
ADNAN ALHOMSSI∗, RelationalAI, Inc., Germany
TOBIAS ZIEGLER, Technische Universität München, Germany
VIKTOR LEIS, Technische Universität München, Germany

Achieving both high throughput and low commit latency has long been a difficult challenge for Database
Management Systems (DBMSs). As we show in this paper, existing commit processing protocols fail to fully
leverage modern NVMe SSDs to deliver both high throughput and low-latency durable commits. We therefore
propose autonomous commit, the first commit protocol that fully utilizes modern NVMe SSDs to achieve both
objectives. Our approach exploits the high parallelism and low write latency of SSDs, enabling workers to
explicitly write logs in smaller batches, thereby minimizing the impact of logging I/O on commit latency.
Additionally, by parallelizing the acknowledgment procedure, where the DBMS iterates through a set of
transactions to inspect their commit state, we mitigate excessive delays resulting from single-threaded commit
operations in high-throughput workloads. Our experimental results show that autonomous commit achieves
exceptional scalability and low-latency durable commits across a wide range of workloads.

CCS Concepts: • Information systems→ Database transaction processing.

Additional Key Words and Phrases: Database Management Systems, Transaction Processing, Logging, Group
Commit, Commit Processing, Latency

ACM Reference Format:
Lam-Duy Nguyen, Adnan Alhomssi, Tobias Ziegler, and Viktor Leis. 2025. Moving on From Group Commit:
Autonomous Commit Enables High Throughput and Low Latency on NVMe SSDs. Proc. ACM Manag. Data 3,
3 (SIGMOD), Article 191 (June 2025), 24 pages. https://doi.org/10.1145/3725328

1 Introduction
Logging on disk. Online Transaction Processing systems seek to optimize two critical but often
conflicting goals: low latency and high throughput [14, 15, 36, 63]. Achieving both is challenging
because of the durability requirements for write-ahead logging. Historically, logging operations
were slow because magnetic disks could only provide millisecond-scale write latencies. To improve
throughput on these slow devices, DBMSs implement group commit, which batches multiple
transactions to amortize log writing costs [2, 3, 17, 21, 22, 30, 34], but this leads to higher commit
latency [30, 55].

∗Work done while at Friedrich-Alexander-Universität Erlangen-Nürnberg

Authors’ Contact Information: Lam-Duy Nguyen, lamduy.nguyen@tum.de, Technische Universität München, Germany;
Adnan Alhomssi, adnan.alhomssi@relational.ai, RelationalAI, Inc., Germany; Tobias Ziegler, t.ziegler@tum.de, Technische
Universität München, Germany; Viktor Leis, leis@in.tum.de, Technische Universität München, Germany.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2836-6573/2025/6-ART191
https://doi.org/10.1145/3725328

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.

https://doi.org/10.1145/3725328
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3725328


191:2 Lam-Duy Nguyen et al.

0.1ms

1ms

10ms

0.1s

1s

0 2M 4M 6M 8M

Throughput [txn/s]

9
0
P

 la
te

n
cy

lo
g
 s

c
a
le SQLite

RocksDB

WiredTiger

centralized 

logging

decentralized 

logging

LeanStore

group commit

central. log

LeanStore

group commit

decentral. log

~24,000×

lower latency

LeanStore

Autonomous Commit

Fig. 1. No existing DBMS or commit protocol can achieve
both low-latency commits and high throughput. Our proposed
solution, autonomous commit, accomplishes both.

Logging on persistent memory. Per-
sistent memory emerged as a promis-
ing solution, with prior research show-
ing that achieving both objectives is
possible with this new class of storage
devices [28, 31, 54]. Unfortunately, In-
tel’s Optane product has been discon-
tinued [16, 26] and NVDIMMs are not
widely available [32], which leaves the
challenge unresolved.
SSDs to the rescue? The emergence of
modern NVMe SSDs presents another
opportunity to achieve both low latency
and high throughput. Unlike magnetic disks, NVMe SSDs offer write latencies in the tens of
microseconds and support high levels of parallelism. Moreover, they are cheap and widely available.
This raises the question of whether existing commit protocols can effectively leverage low-latency
NVMe SSDs to achieve both high throughput and low-latency durable commits?
Existing solutions. Figure 1 shows that existing DBMSs – specifically their commit processing
protocols – fail to simultaneously achieve low-latency commits and high throughput with modern
NVMe SSDs. The figure shows the results of a YCSB benchmark (details in Section 6.1) contrasting
the two main approaches: (1) Group commit with centralized logging [46] (i.e., a shared log
buffer between all threads) as used by WiredTiger, SQLite, and RocksDB, and (2) Group commit
with decentralized logging (i.e., each thread has a designated log buffer) [28, 54, 57] as used by
LeanStore [28]. As the figure shows, the centralized approach can achieve low 90th-percentile
latency but offers limited throughput due to contention on the shared log buffer. Conversely, the
decentralized design provides good scalability at the cost of high commit latency, with 90p latency
exceeding four seconds.
Bottleneck. Our analysis (cf., Section 2.3) of LeanStore revealed that actual transaction execution
accounts for only 0.001% of the total commit latency, with most of the latency stemming from the
commit processing subsystem. Log flushing contributes just 8% of the total latency, while commit
acknowledgment, particularly dependency checking, is a more significant bottleneck. The root
cause of these inefficiencies is in the unithreaded design of group commit.
Autonomous commit. This work addresses these bottlenecks by designing a commit processing
algorithm, autonomous commit, from the ground up, leveraging modern NVMe SSD characteristics.
Modern SSDs support small, random, parallel, and durable writes with double-digit microsecond
latency, enabling a fully concurrent and parallel commit processing protocol. Instead of batching
large writes as in traditional group commit, autonomous commit parallelizes small log flushes
across workers. We then decouple and parallelize the dependency checking from the flushing phase.
We further introduce a series of optimizations to minimize latency and ensure robustness in realistic
workloads.
Discussion. Our design incorporates a series of complementary techniques that, while simple,
are remarkably effective, reducing latency by up to four orders of magnitude without sacrificing
throughput. We attribute this surprisingly notable improvement to two factors. First, much of the
recent research on transaction processing has focused primarily on throughput, often overlooking
the critical role of latency. Second, modern SSDs offer extremely low-latency, durable writes, a
capability that has received limited attention in the research literature. By carefully optimizing for
commodity data center hardware, autonomous commit achieves sub-millisecond commit latency,
even for high-throughput workloads.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



Moving on From Group Commit: Autonomous Commit Enables High
Throughput and Low Latency on NVMe SSDs 191:3

READY

BEGIN READY

BEGIN

INS(Pa)

UP(Pb) COMMIT

TX1

TX2

HARDENED

   Flush all
log buffers
to storage

1     Dependency check: TX2 can
commit when TX1 commits

2

TX2 depends on TX1 because it accesses Pa after TX1 modifies it

(b) Decentralized logging(a) Centralized (ARIES) logging

COMMITTED
Flush central
log buffer to

storage Log buffer Commit processing

COMMIT

READY

BEGIN READY

BEGIN

INS(Pa)

UP(Pa) COMMIT

TX1

TX2

COMMIT

Log buffers COMMITTED

Dependency edge

Commit processing

Fig. 2. State machine of a transaction, in centralized (ARIES) logging (a) vs. decentralized logging (b).

2 Commit Processing and Its Bottlenecks
In this section, we provide an overview of commit processing, followed by an exploration of the
characteristics of modern SSDs.We then analyze why state-of-the-art commit processing techniques
lead to high commit latencies on SSDs.

2.1 Commit Processing
Commit processing is fundamental to ensuring transaction durability. In this section, we provide
the necessary background to understand the stages of commit processing and its challenges.
Centralized logging: ARIES. ARIES has long been the standard logging and recovery mechanism
for disk-based DBMSs. ARIES relies on centralized logging, meaning all transactions share a single
log buffer where write-ahead log (WAL) entries are stored until they are flushed to storage.
ARIES transaction lifecycle. As illustrated in Figure 2(a), the life cycle of a transaction in a
DBMS using ARIES-style logging follows several stages [46]. The transaction begins with a BEGIN
command, followed by the execution of user queries and corresponding DBMS tasks, such as
isolation validation. After execution, the transaction transitions to the READY state1, indicating
that it can be committed. At this point, its metadata is placed in a centralized buffer called the
pre-committed queue. Transactions that have dependencies must be committed in a specific order
to ensure consistency. Dependencies occur when one transaction reads or writes data that another
transaction has accessed. For instance, in Figure 2(a), consider transaction TX1, which inserts a new
tuple into page Pa but has not yet been completed. If transaction TX2 subsequently updates another
tuple in page Pa, a dependency is created between TX2 and TX1.
How ARIES manages dependencies. To manage such dependencies, ARIES ensures that transac-
tions are placed in the pre-committed queue in their execution order. This guarantees that depen-
dencies are resolved correctly and that transactions can be correctly recovered after a failure. A
transaction is marked as COMMITTED and can only be acknowledged to the user once its log records
have been durably written to storage.
Group commit with ARIES: Scalability challenges. In ARIES, the log buffer is flushed to storage
with every transaction commit, resulting in a large number of I/O operations. To reduce this I/O
overhead, DBMSs commonly use group commit, which defers I/O writes to enhance transaction
throughput. Group commit works by delaying the writes of multiple READY transactions for a short
period, then writing all of their logs to storage in a single I/O operation and acknowledging these
transactions as COMMITTED together. This method reduces I/O costs by amortizing them across

1READY is ready to commit, which is conceptually equivalent to TRX_QUE_COMMITTING in MySQL/InnoDB [2].

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



191:4 Lam-Duy Nguyen et al.

several transactions. However, with modern multi-core CPUs, the centralized log buffer of ARIES
becomes a scalability bottleneck, ultimately limiting throughput [27, 34, 54, 57].
Decentralized logging: Scalability with a trade-off. To address the scalability issues of cen-
tralized logging, many works propose decentralized logging, where each worker is assigned its
own log buffer [27, 28, 37, 54, 57]. This approach improves scalability by eliminating contention
on a shared log buffer. At the same time, ensuring durability and consistency across all workers
becomes more complex, making commit processing more difficult [28, 54].
Decentralized logging: Complex commit processing. In decentralized logging, commit pro-
cessing becomes more complex due to transaction dependencies. Log records from dependent
transactions may end up in separate buffers, as illustrated in Figure 2(b). Consider the same example
as before: transaction TX1, which inserts a new tuple to page Pa but has not yet completed its execu-
tion. After that, transaction TX2 updates another tuple in page Pa, which creates a dependency edge
from TX2 to TX1. Now, if the DBMS flushes the log buffer containing TX2 before TX1 is committed,
TX2 will be marked as HARDENED (i.e., its log records are durable). However, because TX2 might
have accessed data modified by TX1, it cannot be fully committed until TX1 is committed. This
complicates commit processing in decentralized logging, as it requires ensuring the durability of
log entries and checking that all dependencies are resolved before allowing transactions to commit.
Decentralized logging: Commit conditions. Figure 2 shows the transaction lifecycle in a decen-
tralized logging-based DBMS. The commit processing subsystem must ensure that all dependencies
are resolved when it transitions transactions through the stages from READY, to HARDENED (by
writing the logs to storage) and finally to COMMITTED. We can formalize the commit conditions for a
transaction in decentralized logging as follows:

1 Log durability (READY⇒ HARDENED): Ensure all its modifications, i.e., log entries, are durable
in the storage.

2 Dependency checking (HARDENED ⇒ COMMITTED): All dependencies must also be commit-
ted [17, 28, 54, 57].

Group commit with decentralized logging. Similar to centralized logging, group commit is
used in decentralized logging to amortize I/O costs. However, unlike in centralized logging, where
the group committer only has to flush the log buffer, the group committer in decentralized logging
must ensure that the two commit conditions are satisfied. Group commit in decentralized logging
operates as a sequence of commit rounds, each consisting of two stages: log flush and commit
acknowledgment. At the start of every commit round, the DBMS iterates through all buffers to
collect their READY transactions and associated logs. Then, it triggers log flush: writing all those
log entries to the storage – usually with asynchronous I/O [9, 25, 33] – then moving the state of
those transactions to HARDENED. Finally, the system calls commit acknowledgment to determine the
new set of safe transactions, i.e., satisfying the above commit conditions, and acknowledges them as
COMMITTED.

This two-stage process allows decentralized logging systems to overcome the scalability bottle-
neck of centralized logging, ensuring that transactions are durably and correctly committed. As a
result, many modern DBMSs have adopted this model for commit processing. Unfortunately, while
this approach delivers high performance, as shown in Figure 1, it suffers from high commit latency
on modern SSDs. To understand the reasons behind this, we next explore the characteristics of
modern NVMe SSDs and analyze the underlying bottlenecks.

2.2 Characteristics of NVMe SSDs
So far, we have focused on commit processing as it is traditionally implemented in disk-based
systems. This section explores the key differences between conventional magnetic disks and modern

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



Moving on From Group Commit: Autonomous Commit Enables High
Throughput and Low Latency on NVMe SSDs 191:5

NVMe SSDs. Understanding these differences will help explain why, despite the microsecond-level
write capabilities of SSDs, commit latencies remain high in systems that use them.

10μs

100μs

1ms

10ms

100ms

512B 512KB 512MB

Write block size

L
a
te

n
cy

lo
g
 s

ca
le

(a) Single thread with varying block size

40 μs40 μs40 μs

10μs

100μs

1ms

10ms

100ms

1 4 16 64

Number of threads

(b) Multi-threads with 4KB block size

Fig. 3. Average random-write latency of an enterprise NVMe SSD,
measured using microbenchmarks.

Smaller writes (4-16KB). Enter-
prise NVMe SSDs offer low-latency
writes [24, 25, 29, 36]. For example,
as Figure 3(a) shows, our Kioxia SSD
achieves random write latencies as
low as 11𝜇𝑠 for a 4KB write unit. La-
tency stays below 11𝜇𝑠 for write units
up to 64KB, but can reach up to 87ms
for a 512MB write. Therefore, smaller
writes (e.g., 4KB or 16KB) should be
used to design a commit processing
system capable of microsecond-level
commit latencies.
Parallel writes.While smaller write sizes help minimize latency, high throughput can be main-
tained by leveraging the parallelism of NVMe SSDs. Unlike magnetic disks, which are limited by
a single seek arm, SSDs can handle multiple writes concurrently. Furthermore, these writes do
not need to be sequential; they can be random. As shown in Figure 3(b), NVMe SSDs maintain
low-latency durable writes even with concurrent random writes. For example, write latency barely
increases with a 4 KB write unit and 16 concurrent threads. Thus, we can balance high throughput
and low latency by utilizing parallel small random writes.
Fsync for free. Up to this point, we have focused on write latencies. But historically, the most
significant source of latency was making writes durable using fsync() [24]. This is because the
physical flash write latency is several milliseconds. Consumer SSDs mitigate this by buffering
writes in internal DRAM and finally writes to the non-volatile NAND flash chips when fsync() is
triggered. Enterprise-grade NVMe SSDs, in contrast, eliminate this latency by ensuring that the
DRAM buffer is durable, thanks to the built-in capacitors that supply backup power during system
failures [7, 12, 23, 36]. As a result, fsync() is free with enterprise SSDs. Note that this assumes a
setup bypassing the file system by using block devices, which improves performance significantly
as proven in many existing works [24, 25, 40, 47, 48, 50, 58]. If a file system or the OS page cache is
involved, fsync() is still required.

2.3 Bottleneck Analysis
As just discussed, commit processing on modern SSDs is most efficient when it performs small,
parallel writes to fully utilize their capabilities. However, the fundamental principle of group commit
– batching as many transactions as possible in a single thread to amortize I/O costs — directly
conflicts with this approach.
Latency breakdown setup. To better understand the sources of latency, we measured the four key
stages a transactionmust pass through to be committed: (1) transaction processing, (2) queuing in the
pre-committed queue, (3) log flushing, and (4) dependency checking for commit acknowledgment.
For the measurements, we used the open-source storage engine LeanStore, which is optimized
for high throughput on NVMe SSDs and implements a highly optimized version of decentralized
logging with group commit [9, 28]. In terms of throughput, this implementation is capable of
executing millions of transactions per second.
Breakdown results. Figure 4 shows the breakdown for the YCSB benchmark with an average
transaction latency of 1.8s. Surprisingly, the primary bottleneck is not log flushing to SSD but rather
queuing, where transactions wait to be committed. Log flushing is only the third largest contributor

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



191:6 Lam-Duy Nguyen et al.

to latency, while commit acknowledgment (i.e., dependency checking) is the second major factor.
Although log flushing accounts for only about 8% of the total latency, it still occurs on a millisecond
scale. To achieve commit latencies in the microsecond range, all such bottlenecks must be addressed.
The root cause of these issues is the unithreaded nature of group commit, causing three problems.

0.001%

7.771%

36.425%
55.804%

Commit ack: 665ms

Execution: 12μs

Log flush: 142ms

Queuing: 1019ms

Fig. 4. Latency breakdown of the group commit
with decentralized logging in a multi-threaded
YCSB benchmark.

Problem 1: Flushing delays due to I/O spikes.
In group commit, log flushing is handled by a single
thread, which leads to large batches of logs being
written at once, causing I/O spikes that hurt com-
mit latency. This issue is particularly pronounced in
highly parallel, high-throughput workloads, where
workers fill their log buffers quickly. The single
thread must iterate over tens or even hundreds of
log buffers (workers), accumulating a large volume
of logs in every commit round. In our experiments,
the system completes 24 commit rounds over ten sec-
onds, each causing an I/O spike of approximately
300MB in log writes. As Figure 3 shows, writing
300MB to SSD takes 45ms in a microbenchmark,
significantly increasing the latency for all transactions in that round.
Problem 2: Single-threaded commit acknowledgment. In group commit, a single thread is
responsible for iterating through all pre-committed transactions (of all workers) to verify the
commit state of their dependencies, and then announces the new set of COMMITTED transactions.
This worsens latency in decentralized logging systems with high throughput. This is evident in the
latency breakdown in Figure 4 where commit acknowledgment accounts for 36% of the latency for
the experiment presented in the introduction.

depends

Timeline

Group Commit

TX8 .....

Group Commit

TX5 .....

Queuing ~
1 GC round

TX5

TX8

Fig. 5. Queuing time is significant in group commit.
TX8 can only be committed when its dependency, TX5,
is committed.

Problem 3: Queuing. In decentralized logging,
the queuing overhead – the waiting time be-
tween transaction completion and being com-
mitted – spans at least one group commit round.
This problem arises from the fact that group
commit uses a coupling design: every commit
round must trigger both log flushing and com-
mit acknowledgment. We demonstrate this issue
in Figure 5 with two transactions, TX5 and TX8,
where TX8 depends on TX5. If the current round
contains TX8 while TX5 has not yet completed,
the DBMS still can not commit TX8 until TX5 is
hardened. Consequently, the queuing time of TX8 is at least one group commit round for TX5.

This explains why the queuing overhead is roughly the total time for both log flush and commit
acknowledgment, as shown in Figure 4. In practice, dependency graphs are often more complex,
leading to queuing overhead spanning multiple commit rounds instead of just one in the example.

3 Autonomous Commit
To address the inefficiencies outlined in the previous section, we introduce autonomous commit,
a novel commit processing protocol consisting of two techniques: autonomous log flush and au-
tonomous commit acknowledgment. In Section 3.1, we discuss autonomous log flush, which leverages
the low-latency parallel writes of modern NVMe SSDs to resolve the I/O spikes. We describe the
second technique, autonomous commit acknowledgment, in Section 3.2, and how this technique

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



Moving on From Group Commit: Autonomous Commit Enables High
Throughput and Low Latency on NVMe SSDs 191:7

W0

W1

TX 1 TX 10

TX 3 TX 9 TX 12

Stage 1. Log flush Stage 2. Commit acknowledgement
Same worker acks the same txn set

TX9 TX12

A worker collects and flushes
the log entries of those transactions

W1

W0

W1 TX9 TX12

Autonomous log flush: Workers flush
logs when log size reaches a threshold

W1
Commit ack

W0

W1 Commit ack TX9 TX12

TX9 TX12

Autonomous ack:
Commit ack independently

G
ro

u
p

co
m

m
it

 A
u

to
n

om
ou

s
co

m
m

it

Initial state: Both W0 and W1
have some uncommitted txns

in their local WAL buffers

Commit ack

TX

TX

Already committed txn

Completed txn: to be
committed

TX 10

TX 10 TX 10

TX 10

threshold for
Auto. log flush

Fig. 6. Traditional group commit vs. our proposed approach, autonomous commit.

parallelizes the expensive commit acknowledgment to alleviate its impact on latency. In Section 3.3,
we describe how the design of autonomous commit reduces queuing delays. Lastly, in Section 3.4 and
Section 3.5, we discuss techniques to optimize further and improve the robustness of autonomous
commit.

3.1 Autonomous Log Flush
All workers should flush logs. As discussed in Section 2.3, group commit suffers from flushing
delays caused by large log batches. During each group commit round, a significant log volume is
written to storage all at once, adding hundreds of milliseconds to the commit latency. Instead, we
propose that workers should autonomously flush their log buffers to the storage, hence the name
autonomous log flush, to exploit the parallel low-latency writes of SSDs. Thereby, we can avoid the
latency of large SSD writes.
Howmuch should workers write? The next question is how frequently we write logs to storage.
Most high-performance DBMSs bypass the OS page cache by using O_DIRECT [10, 25, 28, 44, 49,
56], which requires all writes to align with the storage block size (typically 4KB). Consequently,
individual flushes for small transactions (i.e., tens or hundreds of bytes) would cause considerable
write amplification and reduce system throughput significantly.
Proposal: Workers harden small batches. Instead, we propose buffering log entries in each
worker’s local log buffer until reaching a configurable threshold, termed the log flush unit. When a
COMMIT log entry is generated, the worker evaluates if the size of the unflushed log entries meets
this threshold. If so, the worker triggers log flush for its log buffer and then announces the hardened
transaction set to other workers, preparing for the commit acknowledgment stage.

Figure 6 contrasts group commit (upper) with autonomous commit (lower). In both approaches,
workers begin with their own buffers containing uncommitted transactions. In Stage 1, group
commit relies on a single thread to collect and flush all uncommitted entries to the SSD. In contrast,
in autonomous commit, each worker handles its own log flushing independently. For instance, the
log record of TX10 is larger than TX9 and TX12 combined and reaches the log flush threshold on its
own. The log flush threshold should align with the storage block size and remain relatively small
(i.e., < 64KB) to ensure low-latency, durable writes in multi-threaded environments, as discussed in
Section 2.2.

3.2 Autonomous Commit Acknowledgment
Autonomous log flush parallelizes log flushing and limits the log write size, exploiting modern SSDs’
characteristics. This significantly reduces the latency of the log flushing stage, bringing it down
from multiple milliseconds to tens of microseconds (cf. Figure 3). However, as Figure 4 illustrates,

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



191:8 Lam-Duy Nguyen et al.

commit acknowledgment is a much bigger contributor to overall latency. We next describe how to
parallelize commit acknowledgment.
Autonomous acknowledgment. In existing commit protocols, only one thread is responsible for
running the commit acknowledgment process at any given time. Given that a decentralized logging
system can complete millions of transactions per second, this single-threaded approach becomes a
bottleneck. We propose to not only flush logs but also acknowledge transactions autonomously,
i.e., every worker only triggers the commit acknowledgment on its own pre-committed transaction
queue. The right part of Figure 6 (Stage 2) illustrates this approach and contrasts it with group
commit.
Synchronization. Every acknowledgment round requires synchronizing the committed state of
all workers. As the following figure illustrates, these states indicate up to which point all prior
transactions local to each worker have been committed [28, 54, 57]:

TX5

TX7

W0

W1

TX10TX

TX

Committed txn

To-be-committed txn

TX12

TX9

TX3

local committed statedependency

The committed state of worker W0 is TX10, meaning that all transactions prior to TX10 belonging
to W0, i.e., TX3 and TX5, are also committed. Assume that in W1, TX9 has just been hardened (its asso-
ciated logs are flushed to the storage), and it depends on TX10. To determine that the dependencies
of TX9 are all committed, W1 must retrieve the committed state of all other workers. In this example,
after knowing that TX10 belongs to W0 and W0 has committed all transactions until TX10, W1 knows
that TX9’s dependencies are all committed, hence acknowledges TX9.
Optimization: Acknowledgment in small groups. On large servers, the state synchronization
may involve gathering the committed state of hundreds of workers, each protected by a separate
latch. Assuming that there are 100 workers and worker W wants to acknowledge its pre-committed
queue of only one transaction. In this case, worker W has to acquire 100 latches to verify the
dependencies of a single transaction, which is unnecessarily excessive. Multiple pre-committed
queues should be processed per acknowledgment round to amortize this synchronization overhead.
One way to do that is to divide the workers into acknowledgment groups of configurable size,

where any worker can acknowledge transactions of all workers belonging to the same group. Doing
so allows a worker to trigger autonomous acknowledgment on all the workers of the same group.
This parallelizes the expensive acknowledgment while reducing state synchronization frequency.

3.3 Mitigating Queuing Overhead
In decentralized logging, a transaction may be durable but remains uncommitted if its dependencies
have not yet been hardened. Group commit couples log flushing and commit acknowledgment,
which can lead to queuing delays as dependencies wait to be committed throughoutmultiple rounds
of both steps. This delay occurs because the single group committer must iterate through all worker
log buffers, hardening them and checking dependencies. If a dependency is not yet fulfilled, the
committer moves on to the next worker, leaving the transaction to wait until the next round. This
explains why dependency-related queuing is the biggest overhead of group commit, as shown in
Figure 4.
Decoupling I/O from acknowledgment. By splitting the commit operations into two parts –
autonomous log flush and autonomous acknowledgment – and executing them independently, we
eliminate log flushing delays from the queuing overhead. That is, workers can perform autonomous
commit acknowledgment to verify the commit state of their remote dependencies (i.e., dependencies
located in other workers) without needing an additional log flush or waiting for a group committer

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



Moving on From Group Commit: Autonomous Commit Enables High
Throughput and Low Latency on NVMe SSDs 191:9

to perform the check on their behalf. In the example presented in Figure 5, the log flush for TX5
can be interleaved with the commit round containing TX8. As a result, the queuing time of TX8 no
longer includes any delay from log flushing.
Tackling queuing: Frequent acknowledgment. Transactions with remote dependencies require
workers to trigger commit acknowledgment frequently such that the worker owning those depen-
dencies will perform log flush to harden them. However, performing commit acknowledgment too
often (e.g., after every transaction completes) can waste CPU cycles. As the number of workers
increases, the synchronization cost of retrieving the committed states rises, commit acknowledg-
ment becomes more expensive and hence should be triggered less frequently. Whenever a worker
completes a transaction, it triggers acknowledgment probabilistically based on the worker count,
as the following code shows:
if (rand(log2(# workers)) == 0) CommitAcknowledge();

3.4 Optimization: Log Stealing
Autonomous log flush mitigates I/O spikes and reduces the write latency. However, transactions
still face delays while waiting for logs to accumulate to the flush threshold, especially for small
log records. For instance, with a 16 KB flush threshold and an average log size of 160 B, each flush
hardens about 100 transactions. If a transaction takes 6𝜇𝑠 to execute, the average delay before being
hardened is 300𝜇𝑠 , which is excessive. Lowering the flush threshold (e.g., to 4 KB) reduces latency
by hardening fewer transactions per flush but does not fully resolve the issue. Forcing flushes
earlier can reduce delays but leads to I/O amplification if the batches are not full, consuming SSD
IOPS needed for other tasks like checkpointing and buffer management.
Solution: Log stealing. Instead, we introduce log stealing as a solution to mitigate excessive
delays caused by workers accumulating log entries. We trigger stealing operations only at the end
of a transaction’s execution. Upon the end of a transaction’s execution, the worker loops through
all target workers and executes the log stealing operation as depicted in the following figure:

Log Y Log XZ

Clean log

Dirty log

Clone logs

Log X Y Z

Initial

Notify Log Y Log XZ Y Z

CAS() on clean cursor2

Log Y ZSteal

1

dirty
cursor

atomic
clean
cursor

Target Worker

The figure illustrates the three main steps involved in the log stealing operation (from top to
bottom), where the current worker (right) attempts to steal log entries from the target worker (left).
Initially, the current worker only contains the log X, and it is trying to steal Y and Z entries from the
target worker. First, 1 the worker calls memcpy() to clone the target’s dirty logs Y and Z, i.e., from
atomic clean cursor to dirty cursor, into its log buffer. Because the dirty cursor is coupled within the
committed state of the targeted worker, which is already protected by a latch (cf., Section 3.2), it
does not need to be atomic. Next, 2 , the worker performs a compare_and_swap() (CAS() in the
figure) which serves two purposes (1) it ensures that no other worker has stolen the same logs
otherwise the CAS() would fail and (2) if it succeeds it notifies to other workers that it has just
stolen those logs. Finally, the worker submits an I/O write request to persist the log buffer and
notifies everyone that the log flush, which contains logs of transactions across several workers, is
completed.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



191:10 Lam-Duy Nguyen et al.

Who to steal logs? Unrestricted log stealing incurs inter-die communication, which is expensive
on modern CPUs2. To mitigate this, we pin the workers to specific CPU cores and restrict them to
only steal within their topology group. For example, an AMD EPYC processor with multiple CCDs,
each has eight CPU cores sharing the same L3 cache. In this setup, we can use a group size of eight
threads. Consequently, a worker only steals from others through the shared L3 cache, reducing
expensive memory access.
Synchronization of concurrent stealing operations. Log stealing significantly reduces the
queueing time. However, it may suffer from a flush race condition, i.e., multiple workers steal from
the same worker and complete their log flush in a different order than the stealing sequence. One
solution is to employ a parking lot-like technique [13, 43], as is illustrated in the following figure:

W1 TX 5TX 2 TX 8

(a) Worker stealing TX 2
and TX 3 completes first

Three other workers steal logs from W1 with the following order:
[TX 2, TX 3] - [TX 5, TX 7] - [TX 8, TX 9]

TX 2 ......

Notify all TXNs of W1
until TX 3 are hardened

(b) One of the other two completes first,
e.g. one who steals TX 5 and TX 7

Combine the notification task of TX 7 with
that of TX 3. The worker stealing TX 3 will
notify log durability for all TXNs until TX 7

TX 3 TX 7 TX 9

TX 3 TX 5TX 2 TX 3 TX 7 ......

There are two possible scenarios: either the first worker (e.g., stealing TX2 and TX3), completes its
log flush first, or any of the other two completes first. In the first scenario, that worker notifies
that all transactions until TX3 of worker one are durable. For the second scenario, the notification
task for the stolen transactions is merged with the preceding transactions. As in the example, the
worker who completes TX7 will merge the notification task for TX7 with that for TX3 and then
not notify anything. After that, the worker who steals TX3 will now notify TX7, which inherently
includes three older transactions. This approach ensures the correct transactional durability despite
potential out-of-order log flushes.

3.5 Managing Latency Under Low Load
Problem. Combining all techniques described so far achieves low-latency commits in a steady state
where transactions contiguously execute one after another. This differs from realistic workloads
with frequent idle periods between transactions, e.g., where users pause to think before making
new requests [8, 18, 51]. This inactivity presents a challenge for autonomous commit, as workers
produce minimal or no logs during these times and thus cannot reach the flush threshold quickly.
In these situations, transactions may remain volatile for an extended period because the log buffers
take longer to fill up, delaying log flush operations and leading to higher commit latency.
Force commit. One solution is to force commit (i.e., trigger both autonomous log flush and au-
tonomous acknowledgment) if the worker remains idle for a reasonable duration. That is, every
worker predicts the next idle time; if there is enough free time, it will flush its log buffer and
subsequently invoke commit acknowledgment. A simple strategy to predict the next idle time is to
average a few last idle periods. Under specific conditions, e.g., when the average idle time exceeds
the write I/O latency, the worker will write its dirty log buffer to the storage and call commit
acknowledgment.
When to force commit? If we naively trigger force commit if𝑛𝑒𝑥𝑡_𝑖𝑑𝑙𝑒_𝑡𝑖𝑚𝑒 ≤ 𝑓 𝑜𝑟𝑐𝑒_𝑐𝑜𝑚𝑚𝑖𝑡_𝑡𝑖𝑚𝑒

(the average time taken for force commit), the worker may not trigger force commit at all. For
instance, assuming that the average force commit time is 50𝑢𝑠 and there is a sequence of idle time:

2Modern server CPUs usually comprise multiple dies [1, 5], in which inter-die communications are slower than intra-die
communications.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



Moving on From Group Commit: Autonomous Commit Enables High
Throughput and Low Latency on NVMe SSDs 191:11

[5𝜇𝑠, 10𝜇𝑠, 16𝜇𝑠, 12𝜇𝑠]. Based on this sequence, one may predict that the 𝑛𝑒𝑥𝑡_𝑖𝑑𝑙𝑒_𝑡𝑖𝑚𝑒 ≤ 20𝜇𝑠 ,
which is smaller than the average force commit time. Therefore, the naive comparison approach
may fail to trigger force commits, resulting in high commit latency. Instead, we use a probabilistic
method for the trigger condition:
// Max idle time should be small, e.g., 50 microseconds

if (avg_idle_time ≥ rand(max_idle_time)) ForceCommit();

4 Lock-Free TransactionQueue
Up to this point, we have introduced the core concepts of autonomous commit. This protocol
efficiently parallelizes log flushing and dependency checking by aggressively stealing and acknowl-
edging transactions from other workers. While this approach enables low-latency durable commits,
it heavily relies on a highly concurrent data structure to effectively share transaction objects3
across multiple threads. Notably, other commit processing protocols, such as group commit, also
require an efficient data structure to manage transaction objects across threads. To address this
need, in this section, we present an optimized lock-free transaction queue that is a crucial building
block for autonomous commit and also complements all other commit processing protocols.
Problems of latch-protected transaction queue. Previous approaches usually employ a data
structure (e.g., transaction pool [2] or queue [9]) protected by a latch to manage transaction objects.
In this approach, the workers must acquire a latch before allocating a new transaction object.
However, another worker may be consuming transactions from the same queue, e.g., iterating
through the queue to verify the transaction commit state, which also requires acquiring the
same latch. This leads to potential contention as workers periodically halt progress, lowering the
throughput and increasing latency significantly.
Problems of private transaction queue. Huang et al. [33] propose to deallocate transaction
objects lazily by the workers. Therefore, the transaction set can be thread-local, eliminating the
latch protecting the transaction set. However, this approach does not allow sharing transaction
queues between threads, which are important in several scenarios, e.g., for asynchronous BLOB
logging [48] or autonomous commit acknowledgment as described in Section 3.2.
Lock-free queue. We advocate for the use of a single-producer, single-consumer lock-free queue.
This is because every worker maintains its transaction queue (i.e., single producer), and during
every commit round, only one thread processes a queue (i.e., single consumer). We recommend
the circular queue because it is simpler and more efficient than an unbounded queue. Additionally,
because autonomous commit releases transactions aggressively, the number of queued transactions
per worker is bounded.
Serialized transaction. With millions of transactions per second, transaction deallocation intro-
duces significant overhead, worsening both throughput and commit latency. To address this, we
serialize every transaction object into a variable-sized byte array. Consequently, multiple transac-
tion objects can be placed contiguously within a large memory buffer, making deallocation very
efficient: Large buffers can be released with madvise(MADV_DONTNEED), while smaller ones are
kept allocated for reuse.
Implementation. Listing 1 shows our queue implementation. For simplicity, we do not include
the code for the queue operations. First, 1 we ensure that all serialized objects are aligned to the
CPU cache line to prevent false sharing. Next, 2 the system waits until there is enough space to
serialize a new object into the queue. After that, 3 we serialize the object to the queue buffer and
3Transaction objects, or their in-memory representations, store metadata about transactions, including start and commit
timestamps, isolation levels, transaction states, and more. These objects serve as references to the corresponding transactions
during DBMS operations and are typically processed in a first-in-first-out (FIFO) order.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



191:12 Lam-Duy Nguyen et al.

1 struct Queue:

2 atomic<int> head // Read objects from buffer[head]

3 atomic<int> tail // Push new objects to buffer[tail]

4 u8 *buffer = malloc(CAPACITY)

5 void Queue::Enqueue(Transaction &txn):

6 // 1 Evaluate object size after being serialized

7 int size = txn.SerializedSize()

8 // 2 Wait until having enough space for new obj

9 int r_head = head.load()

10 int w_tail = tail.load()

11 while(ContiguousFreeBytes(r_head, w_tail) < size)

12 r_head = head.load()

13 // 3 Serialize the txn and enforce the write order

14 new (&buffer[w_tail]) SerializedTxn(txn)

15 tail.store(w_tail + size)

16 void Queue::BatchDequeue(u64 no_txns, lambda &commit_ack):

17 int ptr = head.load()

18 // 4 Commit the pre-committed queue

19 for (int tx_i : Range(0, no_txns))

20 SerializedTxn txn = &buffer_[ptr]

21 if (!commit_ack(txn)) { break }

22 ptr += txn->Size()

23 head.store(ptr)

Listing 1. Lock-free queue of serialized transactions.

notify other threads about the new enqueued transaction. This makes retrieving the pre-committed
queues trivial by simply load() the number of queued items (omitted from Listing 1). With the
number of queued transactions, 4 the system can iterate through the completed transaction set
efficiently to verify their commit state. This batching dequeue mechanism also reduces cache
coherence traffic [59], thus improving performance.

5 Robust Dependency Tracking for Stragglers
So far, we have glossed over how dependency tracking works, i.e., how we determine that one
transaction depends on another.In practice, this plays a crucial role to system performance: Different
tracking mechanisms (1) require varying amounts of information to be tracked [54, 57] and (2)
dictate how workers assess the commit state of remote dependencies. These differences significantly
influence the efficiency of the commit processing subsystem.
In this section, we will begin by reviewing existing dependency tracking strategies. We will

explain why Global Sequence Numbers [54] stands out as the most practical design among all
decentralized logging variants, followed by a discussion about the trade-offs for its advantages: the
straggler problem. We will then introduce an incremental optimization that, as demonstrated in
our experiments (cf., Section 6.2), effectively mitigates the straggler problem and thus enhances
commit latency in workloads where stragglers may occur.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



Moving on From Group Commit: Autonomous Commit Enables High
Throughput and Low Latency on NVMe SSDs 191:13

5.1 Existing Approaches
Precise causality-tracking is memory-intensive. Existing techniques for tracking dependencies
fall into two main categories: precise causality-tracking (PCT) and total ordering. There are two
variants under the first category: DistDGCC [60] and Taurus [57]. DistDGCC [60] includes the
whole dependency graph in log records, incurring considerable runtime and storage overheads.
Taurus [57] achieves the same effect by using Log Sequence Number vectors (LVs) to represent
dependencies. However, with Taurus, every transaction and log entry stores an LV sized by the
number of workers. Assume 100 workers and LVs are represented using 8-byte integers; every
transaction and log would need at least 800 B of metadata, far exceeding the typical transaction
and log record size.

Page access GSN increment

TX5

TX8
PageA
PageB

GSN6
+1 GSN7

GSN1

GSN2

GSN3
GSN7

GSN8

+1

GSN8

(a) Same page

GSN6
+1 GSN7

GSN1

GSN2

GSN3
GSN7

GSN4

+1

(b) Different page

GSN4

Fig. 7. Dependency tracking with GSNs.

Advantages of total ordering.
Wang et al. proposed using Global
Sequence Numbers (GSNs), based on
Lamport clocks, in decentralized log-
ging to achieve a global total order of
transactions [54]. In this approach, a
GSN is assigned to each transaction
and page, establishing a partial order
of transactions based on the sequence
of page accesses, ultimately provid-
ing a total order for log entries asso-
ciated with any page or transaction.

As Figure 7 (left) illustrates, whenever a transaction accesses a page (for both reads and writes),
it synchronizes the local GSN to 𝑚𝑎𝑥 (𝑙𝑜𝑐𝑎𝑙𝐺𝑆𝑁, 𝑝𝑎𝑔𝑒𝐺𝑆𝑁 ). When a new log is generated, the
transaction advances both its local GSN and the GSN of the page associated with that log record.
This technique was further refined with Remote Flush Avoidance (RFA) [9, 28], which determines
whether a transaction only accesses pages modified by transactions previously executed on the
same worker; if so, the transaction can commit as soon as its logs are hardened, as Figure 7 (right)
depicts.

This approach has many advantages over the PCT – reduced memory footprint, minimal log meta-
data, and lower complexity – making GSNs compelling for dependency tracking in decentralized
logging systems, as summarized in the table below:

overheads1 robustness2 impl.
DistDGCC [60] high reliable hard
Taurus [57] high reliable hard
GSN/RFA [28, 54] low unstable easy
GSN/RFA+Barrier (Our) low reliable easy
1 Storage and/or memory 2 In realistic scenarios

Weak commit condition in total ordering. Total ordering comes with a trade-off for its efficiency:
it does not explicitly track transaction dependencies. In other words, it is impossible for the DBMS
to precisely determine whether any particular transaction’s dependencies are committed. Instead,
a weaker commit condition is used: a transaction can commit if its GSN is less than or equal to the
smallest durable GSN across workers [54].

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



191:14 Lam-Duy Nguyen et al.

..

...

....
Timeline

TX50

TX30

depends
TX20

     STRAGGLER: min GSN = 20
because of W1, so TX 50 and

TX 30 cannot commit

idle

     SOLUTION: Push a
barrier txn to the stragglers

to advance min GSN 

B52      EFFECT:
min GSN = 52

W0

W1

W2

1 2

3

Fig. 8. Straggler problem in GSN-based approaches.

Why is this commit condition weaker
than that of PCT? We demonstrate this
with an example in Figure 8, which in-
volves three transactions: TX50, TX20, and
TX30, all of which have been hardened,
and TX50 depends on TX30. All three trans-
actions can be committed if we use any
of the PCT approaches. That is, TX20 and
TX30 have no dependency and can com-
mit. For TX50, its only dependency is TX30
which has already been committed, so the
system can commit TX50 as well. However, under the weaker commit condition of total ordering,
both TX50 and TX30 cannot be committed because their GSNs are higher than the minimum durable
GSN, which is 20 (from TX20). We call this the straggler problem.

5.2 Barrier Transaction
Advancing minimum GSN. The straggler problem arises because slow or idle workers do not
advance their GSNs during inactivity, as no transactions are being processed. To resolve this issue,
we introduce barrier transactions. A barrier transaction is a lightweight transaction generated by
a worker – typically when it wants to trigger a force commit (cf., Section 3.5). This transaction
does not modify any data or generate log entries. Its sole purpose is to advance the worker’s GSN,
thereby increasing the global minimum GSN and allowing other transactions to be committed. An
advantage of barrier transactions is that they integrate seamlessly with the existing commit logic,
making the implementation straightforward.
Working example. Figure 8 provides a working example for barrier transaction. 1 Because the
last transaction in worker 1 is TX20, thus other workers are trapped at minGSN=20. As a result, these
workers can not commit TX30 and TX50 even if those transactions satisfy all commit conditions.
Assuming that the current global GSN is 52, 2 we can push a barrier transaction with GSN=52 to
worker one, B52, and then trigger the commit operation on it. By doing so, 3 the minimum GSN
becomes 52, so the system can then commit TX30 and TX50 with a minimal waiting time.
By strategically using barrier transactions, the system prevents idle workers from hindering

overall progress, ensuring that transactions across all workers can be committed promptly.

6 Evaluation
Experimental setup.We integrate our proposal, denoted asOur, and all existing commit processing
protocols into LeanStore, an open-source storage engine that integrates decentralized logging [6].
We use a combination of total ordering mechanism [33, 54] and Remote Flush Avoidance [9, 28] to
manage transactions’ ordering information. The size of the buffer pool is 32 GB.
Hardware & OS. All experiments were run on a single-socket machine with an AMD EPYC 9654P
Processor with 96 cores / 192 hardware threads and 384 GB memory. The storage device used in
the experiments is an enterprise-grade KIOXIA CM7-R 3.8TB NVMe PCIe5 SSD. We use Ubuntu
with Linux kernel version 6.8.
Variants. We use two autonomous commit variants for evaluation:

• Our4KB: Every worker flushes its log buffer whenever the size of dirty log entries (i.e., log
flush unit) is at least 4 KB. This is the latency-optimized variant.

• Our16KB: Similar to Our4KB, but the log flush unit is 16 KB. This variant offers both high
throughput and low latency.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



Moving on From Group Commit: Autonomous Commit Enables High
Throughput and Low Latency on NVMe SSDs 191:15

Our4KB Our16KB Trad TradQueue Flush FlushQueue

0
20
40
60
80

100

100μs 10ms 1s%
 (

L
a
te

n
cy

 <
 X

)

0
20
40
60
80

100

100μs 10ms 1s
0

20
40
60
80

100

100μs 1ms 10ms 100ms

(a) YCSB benchmark

Trad
Flush

FlushQueue

TradQueue
Our4KB

Our16KB

0
2M
4M
6M
8M

T
p
u
t 
[t
xn

/s
]

(b) TATP benchmark

Trad
Flush

TradQueue

FlushQueue
Our4KB

Our16KB

0
2M
4M
6M
8M

(c) TPC-C benchmark

Our4KB
Flush

FlushQueue

Our16KB
Trad

TradQueue

0

1M

2M

Fig. 9. Close-looping benchmarks: Stressing both throughput and latency.

We use a stealing group size of eight, which follows the CPU topology as explained in Section 3.4.
The acknowledgment group size is two (Section 6.6 will explain the reasoning). The queue size of
all variants is 10 MB per worker.
Competitors. We compare our design with group commit, denoted as Trad. Another competitor
is flush pipelining [9, 34], which runs group commit in a background thread, denoted as Flush.
We implement all strategies in the same test system to isolate the conceptual differences from
incidental differences. We also combine these two protocols with the queue design in Section 4,
denoted as TradQueue for group commit and FlushQueue for flush pipelining. As we will show later,
transactions in these competitors are queued for an extensive period, necessitating a larger queue
size compared to our design. Hence, we use a queue size of 100 MB per worker.

6.1 Stress Benchmark
In this benchmark, we use YCSB, TATP, and TPC-C workloads to evaluate all commit processing
protocols. We run all experiments with 96 threads. For YCSB, we use 50% update ratio and 100
million tuples. The number of warehouses in the TPC-C workload is 96. And for TATP, the number
of subscribers is 1 million. The experimental results are shown in Figure 9.
YCSB: Competitor latency. As Figure 9(a) (top left) illustrates, all competitors experience high
commit latency. In this highly concurrent environment, most transactions take more than 1s to
commit in our competitors. This is primarily because of the expensive commit acknowledgment and
queuing overheads, as explained in Section 2.3. Moreover, because a single thread can not commit
fast enough to keep up with the workers, the number of uncommitted dependencies is very high,
exacerbating the queuing overheads.
YCSB: Latency of autonomous commit. Our4KB provides the lowest latency with its 90p is
only 175𝜇𝑠 , 12431× lower than that of FlushQueue, which provides the best 90p latency amongst all
competitors. However, since autonomous commit fully saturates the I/O capacity of modern SSDs,
the SSD occasionally struggles to serve write operations swiftly. This leads to rare delays in log
flushing, causing high tail latencies for autonomous commit.
YCSB: Why competitors provide poor throughput? As we can see from Figure 9(a), all com-
petitors provide limited throughput because of the logging subsystem. The main reason is that
the log buffers are frequently full because the group commit processes them not fast enough. As
a result, when a worker wants to append a new log record, it usually has to wait for the group
commit to finish the log flush, negatively affecting system throughput. In short, workers have to
wait regularly to have enough free space in the log buffer, negatively affecting system throughput.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



191:16 Lam-Duy Nguyen et al.

If we increase the size of the log buffers, the competitors’ throughput improves at the trade-off of
higher latency.
YCSB: Why our design provides higher throughput? On the other hand, autonomous commit
writes logs frequently upon meeting the threshold. As a result, there are no blocking periods in
the hot path. Therefore, as shown in Figure 9, the two autonomous commit variants have higher
throughput than the two competitors. Specifically, the variant that provides the lowest throughput,
Our4KB, outperforms the best competitor, TradQueue, by 26.1%.
TATP summary. As shown in Figure 9(c), all autonomous commit variants show superior commit
latency to group commit and flush pipelining, similar to previous benchmarks. TATP and YCSB
share similar throughput and latency patterns because the transactions in these two workloads are
very lightweight, pressuring the commit processing subsystem considerably.
TPC-C latency: Autonomous commit vs. competitors. From Figure 9(b), autonomous commit
is also better than all competitors. Specifically, Our4KB and Our16KB provide 283× and 265× lower
90p latency, respectively, compared to the best competitor, FlushQueue. The differences between
autonomous commit and the competitors are less pronounced than in the previous benchmarks
because the queuing and commit acknowledgment overheads are less severe in TPC-C compared
to YCSB. TPC-C transactions are more complex and produce larger log records, leading to lower
throughput.
TPC-C throughput. Only Our16KB variant provides comparable throughput to the group commit
techniques. In contrast,Our4KB invokes log flush and commit acknowledgmentmuchmore frequently
than other variants, thus generating fewer transactions and is not able to amortize the overhead.
We argue that the latency improvements outweigh minor reductions in throughput. However, as
we will show later in Section 6.4, if we increase the number of threads, all autonomous commit
variants will be more performant than all competitors in terms of throughput.
Benefits of the optimized queue. All experiments in Figure 9 show that our proposed queue
design enhances both group commit and flush pipelining techniques. We will explain why in detail
in Section 6.3. Since here, we will only evaluate TradQueue and FlushQueue as the two competitors
with autonomous commit.
Autonomous commit: Effects of log flush unit. Theoretically, a smaller log flush unit should
result in better commit latency. Figure 9 proves this statement by showing that Our4KB results in
lower latency compared to Our16KB. However, the latter provides higher throughput in complicated
workloads such as TPC-C. We will further delve into the log flush unit in Section 6.5.

6.2 Open-Loop Benchmark
To better simulate real-world scenarios with frequent user think times, we integrate the open-system
model [8, 18, 20, 25, 28, 45, 51, 64] with this benchmark. We use both YCSB and TPC-C workloads
in this benchmark, with similar configurations as in previous experiments. The results are shown
in Figure 10.
Autonomous commit. Autonomous commit, Our4KB and Our16KB, always has the lowest commit
latency in both YCSB and TPC-C, with its 99p latency usually less than 100𝜇𝑠 for YCSB and 1ms for
TPC-C. This shows that barrier transactions effectively resolve the stragger problem of GSN-based
decentralized logging. Specifically, when the throughput is small, workers in autonomous commit
will likely trigger force commit several times during system idle. With barrier transactions, all
workers know that everyone has flushed all dirty logs and can acknowledge transactions in time.
Without barrier transactions, autonomous commit will have high commit latency for low-throughput
scenarios, even though still lower than that of the two competitors (not shown in the figure). This
explains the conceptual issue of GSN-based decentralized logging and the important role of barrier
transactions in this problem.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



Moving on From Group Commit: Autonomous Commit Enables High
Throughput and Low Latency on NVMe SSDs 191:17

TradQueue FlushQueue Our4KB Our16KB

YCSB: 90p latency YCSB: 99p latency

1k 10k 100k 1M 5M 1k 10k 100k 1M 5M

100μs

1ms

10ms

100ms

1s

100μs

1ms

10ms

100ms

1s

Throughput [txn/s]

L
a
te

n
c
y
 l
o
g
 s

c
a
le

TPC-C: 90p latency TPC-C: 99p latency

1k 10k 100k 1M 1k 10k 100k 1M

100μs

1ms

10ms

100ms

1s

100μs

1ms

10ms

100ms

1s

Throughput [txn/s]

L
a
te

n
c
y
 l
o
g
 s

c
a
le

Fig. 10. Open-looping benchmarks. The open-looping scheduler significantly undermines the background
commit thread of flush pipelining, leading to its poor commit latency.

Competitors vs. autonomous commit. In contrast, TradQueue and FlushQueue do not implement
barrier transaction and force commit, explaining why they suffer from the straggler problem of GSN-
based logging in open-loop experiments. These two competitors only achieve their best commit
latency when the throughput is sufficiently high – 100K and 500K transactions per second for YCSB
and TPC-C, respectively. This occurs when the benchmark framework generates transactions fast
enough to advance the minimum GSN in sync with their commit rate. However, even in the most
favorable scenarios for the competitors, i.e., large TPC-C transactions with high throughput, the
lowest 99P latency they can achieve is still 78% higher than that of Our4KB.
Group commit vs. flush pipelining. The only difference between group commit and flush
pipelining is whether to run the group commit task in a background thread. As Figure 10 shows,
the differences between these two are significant, unlike the experiments in Figure 9. This differ-
ence is primarily because the CPU cores are oversubscribed with the background commit thread.
Particularly, because the transaction scheduler (which is in the hot path of the workers) is compute-
intensive [4, 18], hence workers will consume CPU resources considerably and thus likely preempt
the background commit thread, a finding aligns with numerous previous studies [19, 25, 33, 35, 53].

6.3 Ablation Study
To better understand the impact of our conceptual building blocks, we now dissect how each
optimization affects the performance. We start with the flush pipelining as the baseline and end
with Our4KB variant. Step by step, we add additional features: the optimized queue in Section 4,
autonomous log flush in Section 3.1, autonomous commit acknowledgment in Section 3.2, and log
stealing optimization in Section 3.4. We also use the YCSB workload with the same parameters as
the previous benchmarks. Figure 11 shows the ablation study for throughput (left), 90p latency
(middle), and 99.9p latency (right).
Lock-free queue. As shown in Figure 11, replacing a latch-based data structure with a lock-free
queue improves throughput and commit latency. Specifically, the optimized queue improves the
throughput of the flush pipelining by 21.5% and reduces 90p latency by 41%. These improvements
show that commit operations can block workers from adding new transaction objects to the
pre-committed queue for a significant amount of time.
Autonomous log flush: Eradicating I/O spikes. By moving the log flush to the workers, the
background thread is responsible only for commit acknowledgment. Autonomous log flush can
significantly reduce the 90th-percentile latency by 8, 867×. There are two main reasons for this
improvement. First, autonomous log flush effectively mitigates the overheads from I/O spikes.
Second, it also reduces queuing overhead. Specifically, because the workload of the background

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



191:18 Lam-Duy Nguyen et al.

0

2M

4M

6M

8M

baseline
+ queue

+ auto. log flush

+ auto. ack.

+ log steal

T
p
u
t 

[t
x
n
/s

]

3.0s 2.2s

243.0μs

366.5μs

174.0μs

0μs

200μs

400μs

baseline
+ queue

+ auto. log flush

+ auto. ack.

+ log steal

9
0
P

 la
te

n
c
y

3.5s 3.0s 2.7s 4.0ms

3.4ms

0ms

1ms

2ms

3ms

4ms

baseline
+ queue

+ auto. log flush

+ auto. ack.

+ log steal

9
9
P

 la
te

n
c
y

Fig. 11. Impact of different optimizations on throughput and latency.

thread is lighter, it can initiate many more commit rounds, thereby considerably decreasing queuing
time.
Autonomous log flush: Tail latencies. However, autonomous log flush exhibits a very high
99th-percentile latency, similar to flush pipelining. This primary reason, unsurprisingly, is the
CPU oversubscription issue on the background commit thread. That is, the number of queued
transactions is occasionally considerable because the background thread does not have enough
computing resources, leading to considerable queuing and the commit acknowledgment overheads,
thus resulting in the phenomenon.
Autonomous acknowledgment: Eliminating high 99p latency. Autonomous commit acknowl-
edgment is free of CPU oversubscription by eliminating the background thread, resulting in lower
99p latency. One surprising finding is that autonomous commit acknowledgment also improves
system throughput. This improvement occurs because, at times, the pre-committed queues become
full while the background commit thread cannot progress due to resource contention.
Stealing logs to optimize latency. Figure 11 shows that the 90p latency of autonomous commit
without log stealing optimization is even worse than that of autonomous log flush. With log
stealing optimization, autonomous commit can cut the 90th-percentile latency in half, and the
99th-percentile latency also reduces by 17.6%. The only issue with the stealing optimization is that
it reduces throughput slightly by 9.1% because of extra synchronization. However, we argue that
the latency gain is more significant than the reduction in throughput, which is still higher than all
other variants.

6.4 Scalability

Hyper-Threads

0

2M

4M

6M

8M

10M

1 48 96 144 192

Number of worker threads

T
p
u
t.

 [
tx

n
/s

]

TradQueue FlushQueue Our4KB Our16KB

Fig. 12. Scalability benchmark.

In this benchmark, we use the YCSB
workload with the same configura-
tions as previous benchmarks. We
vary the number of worker threads to
evaluate our design’s scalability and
compare it with group commit and
flush pipelining. The experimental re-
sults are depicted in Figure 12.
Result. As shown, both autonomous
commit and the two competitors
provide similar performance until
32 threads. When the number of
threads exceeds 32, TradQueue and
FlushQueue cannot scale more. This

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



Moving on From Group Commit: Autonomous Commit Enables High
Throughput and Low Latency on NVMe SSDs 191:19

is because the single-threaded nature is insufficient for that massive volume of transactions. Conse-
quently, workers often wait for the group commit to finish the log flush, leading to considerable
delays and poor scalability. Larger log buffers might improve their scalability but at a higher
memory usage. In contrast, autonomous commit writes log regularly, hence does not require large
log buffers while still exhibiting good scalability, with Our16KB reaching 11 million transactions
per second with 192 threads.

6.5 Log Flush Unit
We use the TPC-C workload in this experiment because it more effectively illustrates the throughput
differences between various log flush units compared to YCSB and TATP. The log flush unit varies
from 4 KB to 128 KB.

Saturate SSD bandwidth

1

500K

1M

1.5M

0

2ms

4ms

6ms

4 8 16 32 64 128

Log flush unit [KB]

T
h
ro

u
g
h
p
u
t 

[t
xn

/s
]

9
9
P

 la
te

n
cy

Fig. 13. Log flush unit benchmark.

Result. As Figure 13 depicts, 4 KB
results in the lowest commit latency.
The main reason is that smaller log
flush units trigger log flushes more
frequently, which advances the mini-
mum durable GSN more quickly. Ad-
ditionally, smaller log flush units in-
crease the number of independent
transactions that meet the RFA con-
ditions, thereby avoiding remote log
flushes (cf., Section 5). Together, these
factors contribute to lower commit la-
tency with smaller log flush units. On
the other hand, Figure 13 also shows that even with 16 KB, the autonomous commit can saturate
the SSD bandwidth, i.e., the throughput can not increase much with a higher log flush unit. In short,
the autonomous commit with a log flush unit of 4 KB provides the lowest latency, while a log flush
unit of 16 KB is an all-around solution.

6.6 Acknowledgment Group Size
We will evaluate the acknowledgment group size in this benchmark using both TPC-C and YCSB
with the same configurations as in previous experiments. The group size varies from one to eight
– with a group size of one, the lock-free queue closely resembles the private transaction queue
proposed by Huang et al. [33]. The autonomous commit variant we use is Our4KB.
Result. As Figure 14 shows, in TPC-C experiments, the group size of eight results in the lowest
commit latency. The primary reason is that, given that the number of transactions in TPC-C is low,
a bigger group size means every acknowledgment round can commit more transactions in time.
However, in YCSB, that group size has the highest commit latency. This is because the number of
completed transactions in YCSB is much higher; thus, a bigger group size leads to more expensive
commit acknowledgment, and ultimately, the queuing overhead is very high.
Furthermore, bigger group sizes also boost throughput, with a group size of eight delivering

10% higher throughput compared to a group size of one (not shown in the figure). We also want to
note that the dependency ratio (i.e., how many transactions require remote log flush or not) only
depends on how fast autonomous log flush is triggered, and thus is orthogonal to acknowledgment
group size. In short, a group size of two or four allows low-latency commit in both YCSB and
TPC-C, which covers a wide range of workloads.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



191:20 Lam-Duy Nguyen et al.

Acknowledgment group size 1 2 4 8

TPC-C with Our4KB

100μs 700μs 5ms

0

25

50

75

100

Latency log scale

%
 (

L
a
te

n
c
y
 <

 X
)

YCSB with Our4KB

100μs 20ms 3s

0

25

50

75

100

Latency log scale

%
 (

L
a
te

n
c
y
 <

 X
)

Fig. 14. Acknowledgment group size experiment.

0

20

40

60

80

100

10μs 100μs 1ms 10ms 100ms 1s

Latency log scale

%
 (

L
a

te
n

c
y
 <

 X
)

TradQueue FlushQueue Our4KB Our16KB

Fig. 15. Mixed-workloads benchmark.

6.7 Mixed Workloads
This experiment runs TPC-C and YCSB workloads on different workers to simulate a scenario
where workers generate log entries at varying rates. Specifically, to challenge the autonomous
commit mechanism, we configure each stealing group so that half of the workers (i.e., four workers)
run TPC-C while the other four workers execute YCSB. This makes it hard for workers to steal log
entries from their peers and introduces additional synchronization overhead. In contrast, the two
competitors, TradQueue and FlushQueue, remain unaffected by this configuration. The experimental
results are presented in Figure 15.
Result. Surprisingly, both TradQueue and FlushQueue provide reasonable commit latency in this
experiment, unlike previous experiments. This is because the data size of this experiment exceeds
the buffer pool capacity, i.e., out-of-memory. As a result, the average execution time of transactions
is several times slower than in previous experiments, leading to significantly lower log volume
and lower transaction objects. Despite that, autonomous commit still outperforms both traditional
group commit and flush pipelining, especially Our4KB whose 90th-percentile latency is 13.2× and
136.8× lower than that of TradQueue and FlushQueue, respectively.

7 Related Work
In Section 2, we already introduced the prior work that our approach is based on. In section, we
discuss other commit processing approaches and contrast their properties with our proposal.
Epoch-based group commit. Epoch-based group commit [52, 62] divides time into a sequence
of epochs, during which a batch of transactions is persisted to storage. While this provides high
throughput, it leads to high commit latency, often taking milliseconds to commit. This is because the
commit state is driven by the epoch period, which is typically tens of milliseconds [52]. Additionally,
this technique is unsuitable for storage-based DBMSs because it relies on value logging, which
requires the whole dataset to reside in memory.
Persistentmemory-based commit. To simultaneously achieve instant commits and high through-
put, previous research has used PM to store transaction logs [28, 31, 38, 39, 54, 61]. However, the
discontinuation of the Intel Optane project [16, 26], along with the limited availability of NVDIMMs
compared to NVMe SSDs [11, 32], has made PM-based commit protocols less attractive. Further-
more, adapting PM-based commit protocols for NVMe SSDs is challenging because (1) the SSD
programming model differs from that of persistent memory; (2) modern NVMe SSDs still exhibit
significantly higher I/O latency compared to persistent memory devices; and (3) the CPU overhead
required to persist a log entry is higher on SSDs. We summarize the conceptual differences between
existing commit protocols and autonomous commit, when combined with decentralized logging, in
the table below:

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



Moving on From Group Commit: Autonomous Commit Enables High
Throughput and Low Latency on NVMe SSDs 191:21

throughput latency
support
OOM1

require
PM2

Group commit [2, 3] medium high yes no
Flush pipelining [34] medium high yes no
Epoch-based [52] high high no no
PM2-based [28, 54] high low yes yes
Autonomous commit high low yes no
1 Out-of-memory workloads 2 Persistent memory

Disk-based commit protocol. Throughout this paper, we have highlighted that the autonomous
commit protocol is optimized explicitly for modern NVMe SSDs, which support low-latency, parallel
writes. However, if the DBMS is deployed onmechanical disks with millisecond-scale write latencies,
the performance of autonomous commit is likely to degrade significantly. In such scenarios, it
may underperform compared to traditional approaches like group commit or flush pipelining.
Addressing this limitation is an area we intend to explore in future research.
Delays in distributed DBMSs. As discussed in Section 5, the GSN-based dependency tracking
mechanism suffers from the straggler problem, where idle workers fail to process transactions,
hence preventing the advancement of the minimum GSN and delaying transaction commits. This
issue is also prevalent in distributed DBMSs and can be even more pronounced due to challenges
caused by the networking infrastructure, such as network partitioning and high communication
overheads. One approach to address this problem is write-TID buffering [41, 42], which optimizes
transaction ID assignment to reduce delays from cross-node communication. Both techniques,
barrier transaction and write-TID buffering, aim to resolve global progress dependencies, effectively
mitigating the impact of delays and stragglers on system performance.

8 Summary
In this paper, we have demonstrated that achieving both high scalability and low commit latency in
transactional DBMSs is possible. By designing and integrating the autonomous commit protocol with
decentralized logging, we have created a system that scales efficiently while maintaining low latency.
Our performance study shows that our approach can commit transactions swiftly, achieving 90th-
percentile latencies in the microsecond range across diverse workloads. We believe that autonomous
commit provides a practical solution for high-performance DBMSs. Our implementation is open
source and available at https://github.com/leanstore/leanstore/tree/latency.

Acknowledgments
We are grateful to the reviewers for their thoughtful feedback. Our sincere thanks go to Goetz
Graefe for his invaluable suggestions that helped shape this research. Additionally, we also thank
Tianzheng Wang and Kaisong Huang for an insightful discussion about decentralized logging and
dependency tracking mechanisms.

References
[1] 2023. 4th Gen AMD EPYC™ Processor Architecture. https://www.amd.com/system/files/documents/4th-gen-epyc-

processor-architecture-white-paper.pdf.
[2] 2023. MySQL source code. https://github.com/mysql/mysql-server/tree/mysql-cluster-8.0.33.
[3] 2023. PostgreSQL source code. https://github.com/postgres/postgres/tree/REL_15_3.
[4] 2024. BenchBase source code. https://github.com/cmu-db/benchbase.
[5] 2024. Intel® Xeon® 6 Processors. https://www.intel.com/content/www/us/en/products/details/processors/xeon.html.
[6] 2024. LeanStore. https://github.com/leanstore/leanstore.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.

https://github.com/leanstore/leanstore/tree/latency
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://github.com/mysql/mysql-server/tree/mysql-cluster-8.0.33
https://github.com/postgres/postgres/tree/REL_15_3
https://github.com/cmu-db/benchbase
https://www.intel.com/content/www/us/en/products/details/processors/xeon.html
https://github.com/leanstore/leanstore


191:22 Lam-Duy Nguyen et al.

[7] 2024. NVMe Specifications. https://nvmexpress.org/specifications/.
[8] Dana Van Aken, Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-Mauroux. 2015. BenchPress:

Dynamic Workload Control in the OLTP-Bench Testbed. In SIGMOD Conference. ACM, 1069–1073.
[9] Adnan Alhomssi, Michael Haubenschild, and Viktor Leis. 2023. The Evolution of LeanStore. In BTW (LNI, Vol. P-331).

Gesellschaft für Informatik e.V., 259–281.
[10] Mijin An, Soojun Im, Dawoon Jung, and Sang Won Lee. 2022. Your Read is Our Priority in Flash Storage. Proc. VLDB

Endow. 15, 9 (2022), 1911–1923.
[11] Mijin An, Jonghyeok Park, Tianzheng Wang, Beomseok Nam, and Sang-Won Lee. 2023. NV-SQL: Boosting OLTP

Performance with Non-Volatile DIMMs. Proc. VLDB Endow. 16, 6 (2023), 1453–1465.
[12] Mijin An, In-Yeong Song, Yong Ho Song, and Sang-Won Lee. 2022. Avoiding Read Stalls on Flash Storage. In SIGMOD

Conference. ACM, 1404–1417.
[13] Jan Böttcher, Viktor Leis, Jana Giceva, Thomas Neumann, and Alfons Kemper. 2020. Scalable and robust latches for

database systems. In DaMoN. ACM, 2:1–2:8.
[14] Alvin Cheung. 2014. Rethinking the application-database interface. In PSFW@HPDC. ACM, 1–2.
[15] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56, 2 (2013), 74–80.
[16] Peter Desnoyers, Ian F. Adams, Tyler Estro, Anshul Gandhi, Geoff Kuenning, Michael P. Mesnier, Carl A. Waldspurger,

Avani Wildani, and Erez Zadok. 2023. Persistent Memory Research in the Post-Optane Era. In DIMES@SOSP. ACM,
23–30.

[17] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael Stonebraker, and David A. Wood. 1984.
Implementation Techniques for Main Memory Database Systems. In SIGMOD Conference. ACM Press, 1–8.

[18] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-Mauroux. 2013. OLTP-Bench: An Extensible
Testbed for Benchmarking Relational Databases. Proc. VLDB Endow. 7, 4 (2013), 277–288.

[19] Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud Object Storage for High-Performance
Analytics. Proc. VLDB Endow. 16, 11 (2023), 2769–2782.

[20] Steffen Friedrich, Wolfram Wingerath, and Norbert Ritter. 2017. Coordinated Omission in NoSQL Database Bench-
marking. In BTW (Workshops) (LNI, Vol. P-266). GI, 215–225.

[21] Dieter Gawlick and David Kinkade. 1985. Varieties of Concurrency Control in IMS/VS Fast Path. IEEE Database Eng.
Bull. 8, 2 (1985), 3–10. http://sites.computer.org/debull/85JUN-CD.pdf

[22] Goetz Graefe. 2012. A survey of B-tree logging and recovery techniques. ACM Trans. Database Syst. 37, 1 (2012),
1:1–1:35.

[23] Gabriel Haas, Adnan Alhomssi, and Viktor Leis. [n. d.]. Managing Very Large Datasets on Directly Attached NVMe
Arrays. Scalable Data Management for Future Hardware ([n. d.]), 223.

[24] Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-Attached NVMe Arrays in DBMS. In
CIDR. www.cidrdb.org.

[25] Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can Do, And How To Exploit It: High-Performance
I/O for High-Performance Storage Engines. Proc. VLDB Endow. 16, 9 (2023), 2090–2102.

[26] Jim Handy and Tom Coughlin. 2023. Optane’s Dead: Now What? Computer 56, 3 (2023), 125–130.
[27] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker. 2008. OLTP through the looking

glass, and what we found there. In SIGMOD Conference. ACM, 981–992.
[28] Michael Haubenschild, Caetano Sauer, Thomas Neumann, and Viktor Leis. 2020. Rethinking Logging, Checkpoints,

and Recovery for High-Performance Storage Engines. In SIGMOD Conference. ACM, 877–892.
[29] Haochen He, Erci Xu, Shanshan Li, Zhouyang Jia, Si Zheng, Yue Yu, Jun Ma, and Xiangke Liao. 2023. When Database

Meets New Storage Devices: Understanding and Exposing Performance Mismatches via Configurations. Proc. VLDB
Endow. 16, 7 (2023), 1712–1725.

[30] Yongjun He, Jiacheng Lu, and Tianzheng Wang. 2020. CoroBase: Coroutine-Oriented Main-Memory Database Engine.
Proc. VLDB Endow. 14, 3 (2020), 431–444.

[31] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. 2014. NVRAM-aware Logging in Transaction Systems. Proc.
VLDB Endow. 8, 4 (2014), 389–400.

[32] Kaisong Huang and Tianzheng Wang. 2024. Lessons Learned and Outlook. Springer Nature Switzerland, 77–87.
[33] Kaisong Huang, Tianzheng Wang, Qingqing Zhou, and Qingzhong Meng. 2023. The Art of Latency Hiding in Modern

Database Engines. Proc. VLDB Endow. 17, 3 (2023), 577–590.
[34] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anastasia Ailamaki. 2010. Aether: A Scalable

Approach to Logging. Proc. VLDB Endow. 3, 1 (2010), 681–692.
[35] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anastasia Ailamaki. 2012. Scalability of

write-ahead logging on multicore and multisocket hardware. VLDB J. 21, 2 (2012), 239–263.
[36] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Yang-Suk Kee, and Moonwook Oh. 2014. Durable write cache in flash

memory SSD for relational and NoSQL databases. In SIGMOD Conference. ACM, 529–540.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.

https://nvmexpress.org/specifications/
http://sites.computer.org/debull/85JUN-CD.pdf


Moving on From Group Commit: Autonomous Commit Enables High
Throughput and Low Latency on NVMe SSDs 191:23

[37] Jong-Bin Kim, Hyeongwon Jang, Seohui Son, Hyuck Han, Sooyong Kang, and Hyungsoo Jung. 2019. Border-Collie:
A Wait-free, Read-optimal Algorithm for Database Logging on Multicore Hardware. In SIGMOD Conference. ACM,
723–740.

[38] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and Youjip Won. 2016. NVWAL: Exploiting NVRAM
in Write-Ahead Logging. In ASPLOS. ACM, 385–398.

[39] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun Park, Young-ri Choi, Alan Sussman, and Beomseok Nam. 2022.
ListDB: Union of Write-Ahead Logs and Persistent SkipLists for Incremental Checkpointing on Persistent Memory. In
OSDI. USENIX Association, 161–177.

[40] Dimitrios Koutsoukos, Raghav Bhartia, Michal Friedman, Ana Klimovic, and Gustavo Alonso. 2023. NVM: Is it Not
Very Meaningful for Databases? Proc. VLDB Endow. 16, 10 (2023), 2444–2457.

[41] Juchang Lee, Yong Sik Kwon, Franz Färber, Michael Muehle, Chulwon Lee, Christian Bensberg, Joo-Yeon Lee, Arthur H.
Lee, and Wolfgang Lehner. 2013. SAP HANA distributed in-memory database system: Transaction, session, and
metadata management. In ICDE. IEEE Computer Society, 1165–1173.

[42] Juchang Lee, Michael Muehle, Norman May, Franz Faerber, Vishal Sikka, Hasso Plattner, Jens Krüger, and Martin
Grund. 2013. High-Performance Transaction Processing in SAP HANA. IEEE Data Eng. Bull. 36, 2 (2013), 28–33.

[43] Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick Loeck, and Christian Dietrich. 2023. Virtual-Memory Assisted
Buffer Management. Proc. ACM Manag. Data 1, 1 (2023), 7:1–7:25.

[44] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018. LeanStore: In-Memory Data
Management beyond Main Memory. In ICDE. IEEE Computer Society, 185–196.

[45] Tianyu Li, Matthew Butrovich, Amadou Ngom, Wan Shen Lim, Wes McKinney, and Andrew Pavlo. 2020. Mainlining
Databases: Supporting Fast Transactional Workloads on Universal Columnar Data File Formats. Proc. VLDB Endow. 14,
4 (2020), 534–546.

[46] C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M. Schwarz. 1992. ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. ACM Trans.
Database Syst. 17, 1 (1992), 94–162.

[47] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System with In-Memory Performance. In CIDR.
www.cidrdb.org.

[48] Lam-Duy Nguyen and Viktor Leis. 2024. Why Files If You Have a DBMS?. In ICDE. IEEE, 3878–3892.
[49] Hamish Nicholson, Periklis Chrysogelos, and Anastasia Ailamaki. 2022. HPCache: Memory-Efficient OLAP Through

Proportional Caching. In DaMoN. ACM, 7:1–7:9.
[50] Jonghyeok Park, Soyee Choi, Gihwan Oh, Soojun Im, Moonwook Oh, and Sang-Won Lee. 2023. FlashAlloc: Dedicating

Flash Blocks By Objects. Proc. VLDB Endow. 16, 11 (2023), 3266–3278.
[51] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. 2006. Open Versus Closed: A Cautionary Tale. In NSDI.

USENIX.
[52] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. 2013. Speedy transactions in multicore

in-memory databases. In SOSP. ACM, 18–32.
[53] Benjamin Wagner, André Kohn, and Thomas Neumann. 2021. Self-Tuning Query Scheduling for Analytical Workloads.

In SIGMOD Conference. ACM, 1879–1891.
[54] Tianzheng Wang and Ryan Johnson. 2014. Scalable Logging through Emerging Non-Volatile Memory. Proc. VLDB

Endow. 7, 10 (2014), 865–876.
[55] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2017. Query Fresh: Log Shipping on Steroids. Proc. VLDB

Endow. 11, 4 (2017), 406–419.
[56] Hobin Woo, Daegyu Han, Seungjoon Ha, Sam H. Noh, and Beomseok Nam. 2023. On Stacking a Persistent Memory

File System on Legacy File Systems. In FAST. USENIX Association, 281–296.
[57] Yu Xia, Xiangyao Yu, Andrew Pavlo, and Srinivas Devadas. 2020. Taurus: Lightweight Parallel Logging for In-Memory

Database Management Systems. Proc. VLDB Endow. 14, 2 (2020), 189–201.
[58] Hiroyuki Yamada, Toshihiro Suzuki, Yuji Ito, and Jun Nemoto. 2023. ScalarDB: Universal Transaction Manager for

Polystores. Proc. VLDB Endow. 16, 12 (2023), 3768–3780.
[59] Stephen Yang, Seo Jin Park, and John K. Ousterhout. 2018. NanoLog: A Nanosecond Scale Logging System. In USENIX

ATC. USENIX Association, 335–350.
[60] Chang Yao, Meihui Zhang, Qian Lin, Beng Chin Ooi, and Jiatao Xu. 2018. Scaling distributed transaction processing

and recovery based on dependency logging. VLDB J. 27, 3 (2018), 347–368.
[61] Jongyeon Yoo, Hokeun Cha, Wonbae Kim, Wook-Hee Kim, Sung-Soon Park, and Beomseok Nam. 2022. Pivotal B+tree

for Byte-Addressable Persistent Memory. IEEE Access 10 (2022), 46725–46737.
[62] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014. Fast Databases with Fast Durability and Recovery

Through Multicore Parallelism. In OSDI. USENIX Association, 465–477.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.



191:24 Lam-Duy Nguyen et al.

[63] Tobias Ziegler, Philip A. Bernstein, Viktor Leis, and Carsten Binnig. 2023. Is Scalable OLTP in the Cloud a Solved
Problem?. In CIDR. www.cidrdb.org.

[64] Tobias Ziegler, Carsten Binnig, and Viktor Leis. 2022. ScaleStore: A Fast and Cost-Efficient Storage Engine using
DRAM, NVMe, and RDMA. In SIGMOD Conference. ACM, 685–699.

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 191. Publication date: June 2025.


	Abstract
	1 Introduction
	2 Commit Processing and Its Bottlenecks
	2.1 Commit Processing
	2.2 Characteristics of NVMe SSDs
	2.3 Bottleneck Analysis

	3 Autonomous Commit
	3.1 Autonomous Log Flush
	3.2 Autonomous Commit Acknowledgment
	3.3 Mitigating Queuing Overhead
	3.4 Optimization: Log Stealing
	3.5 Managing Latency Under Low Load

	4 Lock-Free Transaction Queue
	5 Robust Dependency Tracking for Stragglers
	5.1 Existing Approaches
	5.2 Barrier Transaction

	6 Evaluation
	6.1 Stress Benchmark
	6.2 Open-Loop Benchmark
	6.3 Ablation Study
	6.4 Scalability
	6.5 Log Flush Unit
	6.6 Acknowledgment Group Size
	6.7 Mixed Workloads

	7 Related Work
	8 Summary
	Acknowledgments
	References

